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The two-dimensional boundary layer equations are presented in a tinite-element form 
using the Galerkin criterion within the method of weighted residuals. A linear shape 
function and one-dimensional natural coordinates, applied locally, are used to dis- 
cretize the coordinate direction transverse to the main flow. Streamwise derivatives are 
replaced by an implicit integration algorithm and yield tridiagonal or diagonal matrix 
algebraic equations that are solved by an efficient procedure. Solutions are obtained 
by marching in the streamwise direction. Numerical comparisons are made between 
the finite-element and Crank-Nicolson finite-difference techniques, as well as com- 
parison to the Blasius solution for accuracy and convergence evaluation in incom- 
pressible flow. Extensive error correlations are established to evaluate the effect of dx 
and dy step sizes on solution numerics as well as the implications on round-off and 
truncation error as influenced by these step sizes. The effect of the aspect ratio of the 
element has been evaluated, and realistic values for accurate computational processes 
are established. As a result of these studies, it is concluded that the linear element 
finite-element technique, on the multiple basis of accuracy, convergence, and computa- 
tion time, is competitive with the best second-order accurate finite difference method. 

1. INTRODUCTION 

Most boundary value problems in fluid mechanics, of interest in engineering 
applications, require numerical solution. The increased capabilities of computers 
during the last decade promoted development of sophisticated finite-difference 
solution algorithms [l] that have met the engineering needs for numerical solutions 
to the partial differential equations of fluid mechanics. Recently, increased attention 
has been directed to application of the finite-element solution technique of 
boundary value problems in fluid mechanics [2]. This interest was initially 
stimulated mainly by the greater flexibility in discretization of the solution domain 
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as afforded by the finite-element approach. The numerical result presented in this 
paper afford a critical evalutation of the &rite-element algorithm in comparison 
to the accepted finite-difference procedure, as well as an analytical solution. 

The theoretical foundation of the finite-element method presented in this analysis 
is a local adoption of the Galerkin criterion within the method of weighted residuals 
[3]. The unknown dependent variable Q, is expressed in the interpolation form 

Qm*(xi 3 5) = f 4<xi> Qi(O> (1) 
i=l 

where I$ is a set of trial functions, and the Qi are the (unknown) expansion coeffi- 
cients with dependent variable values corresponding to node locations of the 
discretization. Substituting the approximation Qm* into the partial-differential 
equation to be solved, and rendering the solution residuals orthogonal to the space 
of the trial functions through an inner product operation, yields a set of ordinary- 
differential equations for the unknown coefficients Qi . In the process of formulation 
of the equation in the finite-element representation, operations on products of 
matrices are required. It is convenient to perform these operations in a local 
system using natural coordinates. 

2. THE FINITE-ELEMENT ALGORITHM 

2.1. Finite-Element Algorithm Development 

Using the concept of a finite element, the total domain of physical phenomenon 
under study is considered as an assemblage of disjoint interior subdomains (finite 
elements), interconnected at gridpoints and spanning the boundary value limited 
solution domain. The choice of discretization depends on the geometry of the 
domain, and on the number of independent space coordinates necessary to describe 
the problem. For the two-dimensional boundary layer flow, only a one-dimensional 
element is required. Such an element is simply a straight line with nodal points 
at least at the ends. Computations are simplified by the introduction of natural 
coordinates, defined in local coordinates for a particular element. For a one- 
dimensional line element (parallel to the global y-axis), the relation between the 
natural coordinates & and +2 , of any point p, and the local coordinate system is 

where & = 1,/l, and & = 1,/l. 

(2) 
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Solution of (2) yields, 

- I2 - - II - 

Yl 
l- . 

41 = 1 - (Y/O, $2 = (Y/O, (3) 

where I is the length of the element. Integration of polynomials over domains, 
which is required to obtain the finite-element formulation of the boundary layer 
partial-differential equations is straightforward using the formula [4]: 

The two-dimensional equations of incompressible boundary layer flow with 
zero pressure gradient are: 

L,(u) = 2.4 g + v -$ - ; + (p $) = 0, 

L,(u) = 2 + -g = 0. 

The unknown functions u and a, throughout the solution domain, are approximated 
by finite-element interpolation polynomials within the mth subdomain R, , as 

Kn* = MY>>‘M-an = Mx>>f {4(Y),, 

0, * = wx {4(YN, 

where MYY = {A9 $2>. 

(7) 

(8) 

To determine the unknown values u(x), the concept of weighted residuals is 
introduced. We define a weighted average integral of u over the solution domain y 
as the integral 

(w, 4 = s, wu 4, (9) 

where w is the prescribed weighting function, usually {d}. The u(x) values are 
obtained by equating to zero the weighted integrated residuals over the solution 
domain 

I 8 ($1 Mu*) dy = 0, 
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or 

dy = 0. (10) 

For the finite-element solution procedure, term by term for Eq. (10) is evaluated 
with each finite subdomain 6, , i.e., finite element as follows: 

The kinematic viscosity v is also approximated by the interpolation formula (1) 
within the mth subdomain as, 

v?n* = <vK ($1. (12) 

Evaluating the remaining terms of Eq. (lo), one obtains for the finite-element 
solution algorithm form of (10) evaluated within the mth solution subdomain 

Equation (13) must be evaluated within each finite element Z, , and the totality 
assembled into the global equation system using Boolean algebra by the imposition 
of nodal compatibility. This process of constructing the algebraic equations for 
the global system from the algebraic equations for the individual elements, which 
is routine practice in structural analysis, requires that all elements adjacent to a 
particular node must have the same value of the dependent variables at that node. 
This results in a system of n equations containing u and u,, derivatives. After 
nondimensionalization, the following global form is obtained for the element 
equation (13): 

Ku,-, + 4 w-l,, + h-1 + 6~2 + un+d un,, + (un + un+l) un+l.,l 

= (6/Re)Kv,-, + 0,) u,-~ - b1 + 20, + v,+J u, + (vn + v,+J u,+J 
- 2[-(Ll + 2&J G-1 + (%-I - hL+1) un + @42 + %+J %+A (14) 

where Re = Zu,/v,r . 



+ 

. . . 
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Equation (14) is a global representation of the momentum equation for a node 
at a normal location n and it contains values and derivatives at the adjacent nodes 
n + 1 and n - 1. If we introduce on the right-hand side of Eq. (14) a weighted 
average for the streamwise velocity U, at the normal station n: 

24, = uys, + z&l - e,), (15) 

(where uni are the known values and z&c are the values to be computed) and expand 
Eq. (14) for n nodes in the normal direction, a matrix representation of Fig. 1 is 
obtained. Thus, the initial value term is expressed in terms of three derivatives 
centered at point n. Herein, such a system of equations with tridiagonal matrix 
of the initial value term is defined as a consistent system. 

Introducing into Eq. (13) approximations that are consistent with accuracy of 
the scheme and are exact in the limit as dx + 0, dy + 0, a lumping of the convective 
term uu,, is possible. 

2 
II rug f l 

I I O : II 

m%t! . (16) 

This procedure eliminates the necessity of inverting the initial value term matrix 
in order to solve for u,, terms. 

After a global assemply, the following form is obtained: 

2&r%-1 + 4% + %a+11 uwc 

= WWKv,-l + v,J u,-~ - (v,-~ + 2vn + v,+d un + (vn + vn+J us+4 
- 2{-hz-, + 2%) un-1 + (&z-l - %+1) %I 4 (2&z + %+1) %+l:* (17) 

The approximations to the convective term uu,, can be introduced in many ways. 
This leads to several expressions for the coefficient of the lumped convective 
term uu., , a,{, i = 1,2, 3,4: 

I. a,’ = 2(&z-l + 4% + un+1), 

II. ~1,~ = (3~s1 + 6un + 3u,+A 

III. an3 = z&-l + lOu, + u,+1 , 

IV. u*4 = 12u 78. 

(18) 

After introducing a weighted average for velocity u, (Eq. (15))), an equation with 
lumped version of the convective term in matrix form shown in Fig. 2, is obtained. 
An interpretation of the various forms (18) is provided in the next Section. 
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2.2. Overview of the Finite-Dlxerence Algorithm 

A second-order accurate finite-difference representation of the streamwise 
momentum equation takes the form: 

i i V, u, %a,, = ___ Re Ay2 
e[l& - 2u;+,+l + uin+_ll] 

+ 4 Re Ay2 (h+1 - vn-Je(u;=‘, - uin’-“,> + (1 - e)(U:+, - uft-,)I 

+ (1 - e)[u;+l - 224: + 24:-J 
1 

- & {e[u::; - u;t;l + (I - ep&+, - &I>. (19) 

The finite-difference form of the momentum equation in a matrix form appears 
in Fig. 3. Distinction is made between the weighting factor Bez, for the convective 
term and 0, for the diffusion term. Viewing Figs. 1,2, and 3, it can be seen that the 
largest differences occur in the handling of the nonlinear initial value term, and 
these differences are primarily responsible for the variation in accuracies of the 
various methods. 

The differences in treating the initial value term UU,, in the assembled matrix 
equation can be traced back to the differences in the integration formula resulting 
from the integration over a subinterval: 

are identified with schemes I, III, and IV, respectively Eq. (18). Thus, the fomula 
for Scheme I: 

(I/ M4%431 = WW%z-1 + 8~ + 2u,+A (22) 

is equivalent to linear approximation for u within the subinterval. This formula 
is exact for uoly, which can be easily verified. 

Scheme III is identified with quadratic or cubic approximations for U: UCL~~ or 
UC@. 

Scheme IV is simply a result of application of the trapezoidal rule. The inference 
of these analogies has been confirmed by Strang, [5]. 

581/21/1-5 
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2.3. The Implicit Integration Algorithm 

The finite-element and finite-difference equations presented in matrix form in 
Figs. 1, 2, and 3, have to be rearranged to a form suitable for numerical solution, 
in particular, to a tridiagonal form. Equations of this form are solved easily by 
an efficient algorithm. The finite element representation of equations with a 
consistent matrix, e.g., Eq. (14) can be rearranged by replacing the streamwise 
derivative u,= by a forward finite difference 

Y 

n+l 

It 

n-l 

i- 1 i i+ 1 X 

Introducing on the right-hand side of Eq. (14), a weighted average for U, (Eq. (15)), 
we obtain a tridiagonal equation for the unknown values z&l: 

&;a, + z&lb, + u~~~c,, = d, , 

where 

A, = u,-1 + u, , 

B, = u,-1 + 6u, + un+l , 

c, = u, 4 u,+1 9 

alE = A, - (6dxe,/Re)(v,-, + v,) - ~~x~,,(v,-~ + 24, 

b, = B, + (6~x6,/W(~,-, + 2~ + G+~) + 

c, = c, - Wxe,/Re)(v, + %,I) + 2dxe,d2h + %+1), 

(24) 

d, = A,& + B,uf + C,U;+~ + (6dx0,d/Re)[(v,-, + v,) u;-~ 

- h1 + h + vn+l) d + cVn + vn+l) U:+J - 2dxc 
x [-(L, + 2%) 4-1 + (h-1 - v,+1) Elni + (2% + %+3 uf+,l, 
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and u, in A,, B, , and C, is expressed by a weighted average 

u, = u;+v + (1 - I9) 242, 

65 

(26) 

with uZ+~ taken from previous iteration. 
The system of algebraic equations of tridiagonal form has a solution of the form: 

i+1 
% = %+1 R -E j-F,,. (27) 

Making substitutions similar to those for Eq. (14), shown in Eqs. (15) and (23), 
Eq. (17) reduces to a tridiagonal form (Eq. 24) with the following coefficients: 

a, = -(6AxB,/Re)(v,-, + v,J - 2dxB,,(u,-, + 2v,), 

b, = a + (6Axe,/Re)(v,-, + 2v, + v,+& + 2Axe,,(u,-, - un+l), 

C, = -wxe,iw(vn + v12+3 + 2Axfu22b + u~+~), (28) 

4 = ax, + (6dxB,d/Re) 

x Kvn-1 + v3 d&-l - h-1 + 2vn + vn+d d + (v, + %+3 d+J 
- 2dxe,wh + 2~~) u;-, + (h - o,+~) d + (2~~ + v,+~) ~in+~, 

where a (Eq. (18)) is expressed in terms of U, (Eq. (26)). Similarly, the finite- 
difference equation (19) reduces after introducing Eqs. (15), and (23) to a tridiagonal 
form with coefficients: 

a a=- ( *+3 

b, = u, + 
v Ax -t-.- 28, Re Ayz 

Axe + Axe 
AY 4 Re Ayz (vn+1 

( --&++)A+ Axe c, = 
4 Re Ay2 (%a+1 

4, = u,ul,n + $& [e,(u:+, - 2d + u;-31 

- Zck. eDLu;+, - u:-,I 
2Ay 

- 

- 

b&-A 

%-I), 
(2% 

+ 
AX 

-- (v 4 Re Ayz la+1 - vn-3 b(u;+, - d-,), 

where 
eD = (1 - e). (30) 
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We have for 
0 == I, implicit method, (31) 

and 
0 _ i, Crank-Nicolson method. 

The condensed form of the finite-element equation (Eq. (17)) with various 
expressions for the coefficient a also can be solved without using the tridiagonal 
form by introducing Eqs. (23) and (26) and solving for u::” in terms of values 
.;+l from a previous iteration. Combined with iteration on u and u, the values 
of ui+r are essentially identical to those obtained by using the tridiagonal algorithm. 

2.4. Continuity Equation 

Having computed values of u:” by Eq. (27), the normal velocity u is computed 
from the continuity equation: 

2 (u) + + ($ = 0. (32) 

The continuity equation is of the form suggested by Krause [6] and was derived 
using the identity 

0;+,+(1/2) = gv,i + &+I) + o(dx2). (33) 

The continuity equation at the mid-station (i + Q) used in an iterative way for 
the incompressible flow has the form: 

i+(1/2) 4l = u$y2) + (Lly/2dx)(u,” - z&l + z& - u:l>. (34) 

The normal velocity distribution from the continuity equation is obtained this 
way for both finite-element and finite-difference solutions of the boundary layer 
equation, therefore, the effect of a different solution procedure for values of trans- 
verse velocity u has been minimized for these studies. The momentum equation 
and the continuity equation are solved sequentially in an iterative manner until 
z@’ become stationary. 

3. NUMERICAL RESULTS, ACCURACY AND CONVERGENCE 

3.1. Evaluation Bases 

The finite-element and finite difference algorithms presented in the preceding 
section were programmed into a single computer code to obtain the incompressible 
laminar boundary layer solution for flat plate flow in physical coordinates. 
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Accuracy and convergence was assessed by comparison with the Blasius 
solution [7]. 

The convergence criterion applied to u is & 1 U, - U, 1 < E, where the sum- 
mation was applied over the boundary layer thickness and E = 0.00014005 
was satisfactory in all cases and resulted in stable results with two iterations, 
including the continuity equation. Previous values of u and v were used for starting 
computations at the next x station. 

The accuracy was evaluated by computing the error in the streamwise velocity 
u and in the skin friction C, . Three error norms are evaluated: 

1. An absolute velocity error defined as a maximum deviation between the 
computed, u, , and exact value of u anywhere within the boundary layer thickness 6, 
% * 

E urnax = /~,--u,ll~m 

An average of 10 values in the streamwise direction x, downstream of the relaxation 
zone, over the range of computations is used. 

2. A mean square (L,) error of ZJ defined as 

E, = [Jo6 EQ) dq2 

is computed for some selected cases for comparison with Eumax . 
3. A relative error of the skin friction coefficient 

was computed and was used as a criterion for evaluation. The usual definition of the 
skin friction coefficient is used: 

/-4W?Y) I w 
cf = (1/2)p,um2 * 

The slope (au/@) 1 w was evaluated by a four-point finite-difference expression 
with o(dp). 

The boundary layer computations were performed for incompressible flow of 
air for the following flow conditions: 

pm = 0.2 x IO4 lb/ft2, 
T, = 530”R, 
U, = 300 ft/sec, 

A4, = 0.266. 
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The skin friction error was evaluated at x = 0.75 ft and at Re, = 0.135 x 10’. 
All dimensions are in feet. 

All computations were performed with single precision using IBM 360 computer. 
The computations are initiated using values of u and v obtained from the Blasius 

solution at the streamwise coordinate x = 0.3 ft. It was observed that compu- 
tations over a certain number of steps have to be performed to reach a relaxation 
of the computed values. Due to a finite number of steps across the boundary 
layer, up to 10 steps were required, depending upon the method, for the compu- 
tations to stabilize, and the largest number of steps was required by the finite- 
element consistent method. The velocity error across the boundary layer has a 
parabolic distribution with a peak occurring approximately in the middle of the 
boundary layer. 

The error was evaluated using results obtained after the relaxation zone was 
reached. In general, the accuracy is better with decreasing dy steps. Computations 
of the integral parameters, boundary layer thickness 6, displacement 6*, and the 
momentum thickness 6, were computed for various methods for different sets of 
values of dx and dy, and were compared with exact Blasius values. In general, 
the agreement is good, and the deviations from the Blasius values decrease as dy 
step is reduced. The largest deviations seem to be inherent with the finite-element 

10-l - fi FE-TRID 

A FE-I 

0 FO-IMPL 

0 FD-CN 

- BLASIUS 

dx = 0.005 
dy = 0.0005 

10-3 I I I--I 
0 02 0.4 0.6 0.8 1.0 1.2 

x (ffl 

FIG. 4. Boundary layer, displacement thickness, and momentum thickness distribution for 
FE and FD methods. 
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FIG. 5. Error map for FE and FD methods. 

10-l 

Ff 

- FE-TRII: 

with Error 

For dy > 8.5 x 1O‘4 For dy > 8.5 x 1O‘4 
FE-II Best Method FE-II Best Method 

Fordy< 5x10+ Fordy< 5x10+ 

dv dv 

FIG. 6. Best methods as a function of dy. 
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tridiagonal method. The agreement improves with the streamwise distance X, 
which confirms the existance of a relaxation zone. The error seems to be greater 
for 6 and 6*, than for 19 (Fig. 4). 

A series of computations for each method was performed for various step sizes 
in the streamwise and normal directions dx and dy. It was established that the 
accuracy of a given solution, and the convergence with discretization refinement 
depends on the magnitude of dx and dy, and their ratio in a distinct manner for 
each method. The trends of various methods are discussed in detail for each method 
of solution and a critical comparison of the merits of each method is made. A 
summary of the results for all finite-element and finite-difference methods and a 
comparison of correlations for computational errors is shown in Fig. 5. It reveals 
that all investigated methods converge at dy = 0.0005, to an error E,,,, = 0.003, 
and at this condition, no method offers an advantage over any other method. 
However, some methods show advantages of smaller error for dy < 0.0005, 
or dy > 0.0005. Thus, an optimum method will depend on the magnitude or 
range of dy values used. A delineation of ranges of dy with optimum performance 
of computational methods is shown in Fig. 6. It is noticeable that for dy < 0.0005, 
the Crank-Nicolson and the finite-element method Scheme IV with the finite- 
element tridiagonal convective term are of comparable accuracy, especially for 
decreasing dy. 

3.2. Finite-Element Results 

Computations were performed for a number of different values of dx and dy 
in order to establish the effect of step sizes. Some typical computational results 
for the finite-element method are presented below. 

Figure 7a shows the maximum error in U, Eumax , for the finite-element method 
Scheme II for dy = 0.0002 to 0.001 as a function of dx. The error Eumax decreases 

dv 
0 0.001 E,max fess -  “Its RedLced 

0 A 0 0.0003 0.0005 0.0002 

^ 31 

\Eu,,,ax todx =I,., = Cldvi 152 = C(dx1-'= 

10. 4 

10-J 10-S 10-Z 10-q 
dx dV 

10-s 

a. Influenceof dx on Eumax h Influence ofdy on E,,ax 

FIG. 7. Maximum error E vmaxFE method, diagonalized convective term UU,~ , Scheme IT. 
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with increasing dx step as expressed by the relation E,,, N C(dx)-“.28. The 
variation of dx step results in a decrease of II,,, with increasing magnitude of 
dx, a minimum value at certain values of x and an increase EwmaX for increasing 
value of dx. 

The minimum value of Eumax shifts to higher dx step for increasing dy values 
(Fig. 7a). 

This behavior is due to varying contribution of the truncation and round-off 
error as dx is changed. At small dx values, the round-off error is predominant, 
whereas the truncation error is negligible. As dx goes up, the round-off error 
becomes less significant and the overall error decreases. A minimum of error occurs 
at dx values corresponding to negligible round-off error and small truncation 
error. As dx increases, the round-off error becomes less pronounced and the 
contribution of the truncation error increases. Thus, the interplay of the round-off 
and the truncation error results in two branches of the error curve having negative 
and positive slope with respect to dx coordinate. The branch having negative slope 
is dominated by the strong effect of the round-off error and the positive slope 
branch is dominated by the truncation error. Figure 7b shows the error as a function 
of dy (all results were reduced to dx = 0.01). The dependence on dy is expressed 
by a power relation: 

E - C(dy)1.52. umax - 

The magnitude of steps dx and dy and their ratio dx/dy have a strong influence 
on error and on the convergence of the computation scheme. Figure 8 indicates 
regions where error and convergence are satisfactory and regions with dx/dy 

Exceswe Error 

Good Convergence 

101 
10 4 10-3 

(IV 

FIG. 8. Effect of dx and dy on error and covergence. FE method, Scheme II. 
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/ 

10.~L_I~.!.LLLLL.L I ! 111!11 1,0.4/ 1 / , ii,,,, I 
lo’* 10-z lo” lo-’ 10” 

dx dv 

3. Influence of dx on Eumax b. Influence of dy on Eumax 

FIG. 9. Maximum error JZ,,,, , FE method, Scheme III. 

dv 

dx 

tbrultr Red”CEd 
todx = 0.01 

dv 

a. Influence of dx on E,,,, b. Influence of dy on Eumax 

FIG. 10. Maximum error Eumax , FE method, Scheme IV. 

ratio, where the error becomes excessive and convergence is marginal. This behavior 
sets a practical limit for increasing the step size in the streamwise direction. 

Scheme III leads to results of error having a dx dependence of the form EUmax = 
C(dx)O-48 (Fig. 9a). The dependence of error on u’y for Scheme III has the form 
(Fig. 9b). 

E unmx = C(ujpO~. 
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Scheme IV exhibits a strong dx dependence of error and very distinct minimum 
of &mx for each dy value from dy = 0.0003 to 0.001: Eumax = C(dy)-1-M 
(Fig. 1Oa). The dependence on dy is very strong as expressed by power law 
(Fig. lob): 

E umax = C(dy)3.02. 

3.3. Comparison to Finite DiSference Results 

Computational results were also performed with the same computer code using 
both implicit and Crank-Nicolson, finite-difference method for comparison. 

Results Reduced 
to dx = 0.01 

10-3 I  -  /  ,>, / I  LLL.I ,o.4Lp L I I L,l,>lL , I- 
10-3 10-2 10-l 10-4 10-3 

dx dv 
a. ,,,‘,ue,,ce of dx on E,,,, and E, b. Influence of dv on E,,,, and E, 

FOG. 11. Maximum error E,,,,= and E,, . FE method, Crank-Nicolson. 

E urnax 
E urnax 

10-J 10-Z 10-l 
dx 

a. Influenca of dx on Eumax and i, 

E ulna* 

% 
I 

= C(dv)3.02 

t I I111'111 (  
10-e 10-z 

dv 

b. Influence of dv on E,,,, and E, 

FIG. 12. Maximum error E YmaX and & . FE method, Scheme IV. 



74 POPINSKI AND BAKER 

The solutions for Crank-Nicolson method in Fig. 1 la show a distinct minimum 
of -%nax at dx = 0.015 for dy = 0.0005 and at about dx = 0.05 for dy = 0.001. 
A mean square error i?, plotted for comparison in the same figure reveals similar 
dx dependence, although the magnitude of E, is about 3 of E,,,, . This is also 
noticeable in Fig. 1 lb, where the dy dependence is characterized by the same slope: 
%m.mx , J% - GW8. 

The mean square error correlation for the finite-element method, Scheme IV 
superimposed for comparison with E,,,, in Fig. 12a, has a form E, = C(~X)-O.‘~ 
as compared with correlation for maximum error E,,,, = C(dx)-l.05. The dy 
dependence displays a mean square error about twice lower than EumaX, but 
follows the same slope E, = C(dy) 3.02 (Fig. 12b). A comparison of the finite- 
element solutions for Scheme IV with Crank-Nicolson solutions are shown in 
Fig, 13. At dy = 0.0003, the maximum error Eumax is about 20 % higher, and the 
mean square error E, is about 30% higher for finite-element method than the 

-  FD, Crank-N,colron 

-  -  FE. Scheme IV 

FIG. 13. Maximum error Eumsx and I?,, for FE and FD methods. 
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dx = 0.005 ~ 
dx=ool / 

dx dv 
a. Influence of dx on E 

Cf 
b. Influence of dy on E 

Cf 

FIG. 14. Error of skin friction Ecf. FE method, Scheme IV. 

P dy = 0.0004 

0 dy = 0.0005 

0 dy = 0.0006 

0 dy = 0.0007 

o dx = 0.005 

v dx = 0.01 

I 
-4 
L J 

10-q 10-s 
dv 

2. Influence of dx on Ecf b. Influence of dy on E Cf 

FIG. 15. Error of skin friction Ecf. FD method, Crank-Nicolson. 

error for the Crank-Nicolson method. This difference is diminishing as dv step 
decreases and is eventuahy reversed due to higher power relation for the finite- 
element method. 

Thus so far, an error of u was evaluated and discussed. In order to assess the 
direct effect of an error of u on a quantity of considerable practical importance, 

. . an error of the skm friction cf , EC7 , was computed. The x-dependence of Ecf for 
the finite-element method, Scheme IV, is marked by a minimum that occurs at 
dx = 0.005 for all dy values (Fig. 14a). A strong dx-dependence is noticeable for 
dx < 0.005 while a weaker dependence on dy occurs for dx > 0.005. At about 
dx = 0.1, the error seems to reach the same value of about 10 % regardless of dy 
values. The effect of dy depends on the dx step as is indicated in Fig. 14b. Higher 
error occurs for dx = 0.01 than for dx = 0.005 and the correlation for dx = 0.01 
has a smaller slope due to convergence of all lines for dx > 0.005. Therefore, 
for meaningful comparison of computational results, the magnitude of steps dx 
and dy must be stated. Similar results for EC, were obtained for Crank-Nicolson 
method in Fig. 15. A weaker effect of dy for dx > 0.005 is noticeable and practically 
no dy effect at dx = 0.1. The same qualitative effect of dy on Ecf is shown in 
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FE -Scheme IV 

-- ----FD - Crank-N,colron 

- - - FE. Scheme IV 

FIG. 16. Error of skin friction Ect . FE and FD methods (four-point differentiation formula, 
single and double precision). 

Fig. 15b. A comparison of results for the finite element IV and Crank-Nicolson 
methods of Fig. 16 indicates higher error for dy < 0.00015 for the finite-difference 
method and lower error for finite-difference method for dy > 0.00015 (all data 
were extrapolated for dy < 0.0003). 

To substantiate the effect of the steps dx and dy on the error E, and EC,, and 
the postulate that there exists a dx value for which the error is minimized and 
results as an interplay of the round-off and truncation error, a systematic study 
of the error was made. This study was based on EC, as computed by various 
differentiation formulas in single and double precision. The test function 
selected for this purpose was f = sin(v), and three differentiation formulas were 
used: three-point, and four-point finite-difference formulas and cubic-spline 
differentiation formula. The following finite-difference formulas were used: 

1. Three-point derivative at point 1: 

fz.1 = U/2 dx)(--3f, + 4h -f3> + U/Wx)2fmz.x 
2. Four-Point derivative at point 1: 

fz,l = U/6 WtVi - % + 1% - llfi) + 0/4WYfzm,,, 
The derivatives (dfldw) jW computed by various methods in single precision 

are shown in Fig. 17. The three-point formula is indeed of second order provided 
dy > 0.006. For smaller step sizes, the error is established at about 1O-s and one 
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FIG. 17. Derivative error study, single precision. Influence of dy and precision on Eo, for 
various differentiation formulas. f = sin y; df/dy = f,’ = cos y = exact derivative; fat = 
derivative computed by method i; i = 3-3-point finite difference = -point Unite difference = 
es-cubic spline. Eieo = Ei.y* If,: - f.’ I/f: = relative error about a value 1O-B for dy < 0.05. 

The effect of the double precision is brought out in Fig. 18. The three-point 
formula and the cubic-spline formulas are of the second and fourth order, respec- 
tively, for steps down to 

dy = 10-4. However, the four-point formula is of fourth 
order for dy > 0.04 and results in an error about 2.3 x lo-’ for dy < 0.04. 
By using double precision, the expected accuracy of three-point and cubic-spline 
formulas is extended to very small dy steps as a result of the effects on the truncation 
and round-off errors. After having qualified the accuracy of three differentiation 
formulas using a test function f = sin(y), it is of interest to obtain similar com- 
parisons of skin friction error for the finite-difference and finite-element methods. 

The results for the Crank-Nicolson method are shown in Fig. 19, and a number 
of comments can be made. For dy = 0.006 and double precision, the three-point 
formula shows Ecmin at dx = 0.03. For the four-point equation EC, decreases 
with dx and the error is reduced from 0.2 to 0.15 at dx = 10-3. The cubic-sphne 
formula reduces the error with decreasing dx down to dx = 10-a with the same 
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Eq, " -  dy4 ' 

FIG. 18. Derivative error study, double precision. Influence of dy and precision on Ef for 
various differentiation formulas. f = sin y; dt/dy = f,’ = cos y = exact value; fC. = derivkive 
computed by method i; i = 3-3-point finite difference = 44-point finite differeke = es-cubic 
spline. Etso = Ei,,=, = j f,: - f,’ life’ = relative error of derivative. 
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slope of the error curve. For dy = 0.0003, the three-point formula, EC, reaches a 
minimum at dx = 0.005 and the error goes up for 0.005 < dx < 0.005. The error 
is substantially lower than for the other formulas. The four-point expression extends 
the results for error to dx = 1O-3 with the same error curve slope, with the error 
decreasing with decreasing dx step. Similarly, the cubic-spline method shows a 
decreasing error for dx down to a value 1O-3 with the slope retaining the same value. 

Similar results were obtained by finite-element method (Scheme IV, Fig. 20). 
For dy = 0.0006 and double precision, the three-point formula displays a mini- 
mum of EC, at dx = 0.02 and increases for dx < 0.02, and the magnitude of the 
error becomes larger than that of the four-point and cubic-spline methods. Using 
the four-point equation, a reduction of Ecf with decreasing dx all the way down to 
dx = 1O-3 is obtained. Also, application of the cubic-spline method reduces the 
error EC, with decreasing dx to value lO-3. 

The effect of the double precision on the error Ecf as a function of dx and dy 
for a four-point differentiation formula is shown for both finite-difference and 
finite-elements methods in Fig. 16. The order of error Eo, is increased for the finite- 
element method for dx = 0.01 and for dx = 0.005 (EC, N dy1.91) and for the finite- 
difference method, the order is increased for dx = O.O05(E,, N dyl.%) and it is 
decreased for dx = 0.01. 

Both finite-elements and finite-difference schemes required essentially comparable 
computation time (Fig. 21). This is not surprising, since although two different 

e Computed Cases 

FIG. 21. Computing time for FD method, Crank-Nicolson and FE method, Scheme IV. 
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methods were used to derive an approximation for the momentum equation, both 
resulted in difference equations that require essentially the same computation times. 

4. CONCLUSIONS 

An implicit finite-element algorithm for solution of the boundary layer equations 
is developed. Within the finite-element approach, a variant with a tridiagonal 
convective term uu,, and several variants with condensed convective term matrix 
were developed. This condensation formalized by an order of magnitude argument 
has resulted in several matrix forms that are equivalent to several integration 
formulas for the integral J u&“(y) dy over a subinterval with linear, quadratic, 
or cubic local approximation for u. A delineation and identification of these 
formulas was presented. 

Introducing a finite-difference approximation for the derivative u,, yields a 
simple tridiagonal equation form. This implicit integration formulation eliminates 
more complex, explicit integration and allows recovery of z&+,” by simple solution 
of a tridiagonal equation, or by simple substitution, if values from the previous 
iterate, 24:+l are used in the coefficients a, , b, , and c, . Using these algorithms, 
extensive incompressible boundary layer computations were performed and 
compared with the Blasius solution and with results obtained by second-order 
accurate finite-difference methods. All algorithms used in these studies displayed 
essentially identical stability characteristics. From the studies of accuracy based 
on the velocity and skin friction error of these schemes, it was concluded that the 
finite-element methods yield results that are comparable in accuracy and conver- 
gence with the results obtained by finite-difference methods. A delineation of the 
effect of the dx and dy step sizes on velocity and skin friction error was obtained 
and optimum conditions for numerical computations were established. The com- 
putations can be optimized by using the finite-element variants in various ranges 
of dy and dx step values. The aspect ratios of dx/dy up to about 100 were used, 
although it is desirable to use lower values for finite error (i.e., 20-50). All methods 
produce comparable results at dy = 0.0005 in the physical normal direction, and 
there are ranges of optimum conditions for various finite-element variants. 

In general, the error is reduced by decreasing the step size in the normal direction 
dy; and as a result of the interplay of the round-off and truncation error, a minimum 
error may occur at a certain optimum value of dx, which may, in the case of E,, , 
depend on the dy value, method of computing the derivative (&J/~-Y) iI,. and on the 
precision. 

Although both the finite-difference and finite-element methods are second order 
or better as far as E, is concerned, Ecf depends on the method of computing the 
derivative (&jay) IIL. and on the precision of computations, especially in physical 
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coordinates where the step sizes are much smaller than the usual step sizes in the 
transformed coordinates. The error results in stabilization of the accuracy when 
the step sizes are reduced below certain values. 

The single and double precision affect the error EC, as postulated due to the effect 
of the interplay between the round-off and truncation error as established with the 
test function f = sin(v). For Blasius solution, the same trend is established for 
both Crank-Nicolson and finite-element (Scheme IV) methods, although the trend 
is not as pronounced and is obscured by the fact that the computed curve u(y) 
is not as smooth as the test functionf = sin(u). 

In the range of d’ of this study, 0.0003 < dy < 0.001 the slope of (dfldy) is of 
the order of one for the second- and fourth-order methods. These methods are 
second and fourth order, respectively, for larger dy steps, which are usual in trans- 
formed coordinates when dq = 0.02-0.2 [8]. Lower slope would be expected for 
Blasius solution having more irregular u(y) curve. 

As a result of these studies, it is concluded that the linear finite-element technique, 
on the multiple bases of accuracy, convergence, and computation time, is com- 
petitive with the best second-order accurate finite-difference methods, and the 
greater flexibility of discretization of the solution domain makes this technique 
suitable for many problems with irregular geometry. 

5. POSTLOGUE 

In the context of this study, dealing with a comparison of the finite-element and 
finite difference methods in fluid mechanics, a timely conjecture about an interesting 
dialogue in the field of the elasticity concerning the merits of finite-elements versus 
finite-difference Methods [9] is in order. Many advantages and disadvantages 
of both methods are advanced. 

Some authors claim that there seems to be a convergence of both methods (or 
finite-difference analysis can be a subset of finite-element analysis [IO]) and state 
that if one replaces the explicit integration, in finite elements by the implicit 
integration, more common in finite differences, in a sense that one replaces the 
first derivative by a finite-difference expression in the right way, a finite-difference 
formulation is obtained. This has been confirmed in this study by introducing 
an implicit integration scheme, usual in finite differences, instead of an explicit 
one, and is considered as a contribution of this study. 

It is our belief that a dialogue similar to the one in the structural area will be 
forthcoming shortly in computational fluid mechanics, and it will bring into better 
perspective the advantages and disadvantages of each of these methods. 
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6. APPENDIX: NOMENCLATURE 

[ ] = rectangular matrix. 
{ } = column vector. 

{ }’ = transposed column vector. 
( ),, = (a/&) ( ) derivative with respect to x. 

c, = coefficient of friction. 
i, n = indices. 

1 = length of an element. 
24, zi = velocity. 

Qm* = approximation for dependent variable Q. 
Re = Reynolds number. 

x, 5 = coordinate in predominant flow direction. 
y = normal coordinate. 
p = density. 
p = dynamic viscosity. 
v = kinematic viscosity. 
4 = trial function. 
0 = weighting factor. 
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